

Protein A Nanorose 6FF (耐碱性)

产品名称	货号	规格
Protein A Nanorose 6FF(耐碱性)亲和层析介质		5mL
		10mL
	NG-BR0013	25 mL 100 mL
	NO-DROOTS	
		500 mL
		1 L
Protein A Nanorose 6FF (耐碱性) 预装重力柱	NG-GC0013	1mL
Protein A Nanorose 6FF(耐碱性)预装层析柱		1mL
	NG-PC0013	4.7mL
		5mL

本说明书适用于以上三种产品:

Protein A Nanorose 6FF 亲和层析介质 — 散装填料,适用于自行装柱/放大验证。 Protein A Nanorose 6FF 预装重力柱 — 免装柱,适合小试/捕获/教学与方法开发。 Protein A Nanorose 6FF 预装层析柱 — 免装柱,直接上系统用于常规纯化。

01 产品简介

Protein A Nanorose 6FF 是一款将耐碱性 Protein A 配基定向偶联固定在高度交联的 6%琼脂糖凝胶基质上,利用蛋白 A 和 Fc 片段特异性结合的特点进行纯化,广泛应用于单抗、双抗和 Fc 融合蛋白纯化的捕获步骤。产品优势:

高动态载量: >60 mg 人 IgG 1/mL 介质, 批间一致性优良卓越耐碱性: 耐受 0.1-0.5 M NaOH 在位清洗, 使用寿命长高流速性能: 最大操作流速 500 cm/h, 适合工业化生产

低配基脱落: 定向偶联技术确保配基脱落<15 ng/mg IgG产品特点

02. 技术参数

表 1 产品参数表

	性能
层析介质类型	亲和层析介质
配基	耐碱 Protein A
基架	高度交联的 6%琼脂糖
平均粒径	$\sim \! 70~\mu m$
动态载量	> 60 mg IgG1 / mL 层析介质 *

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209

最大流速	500 cm/h
耐压	0.5 MPa
使用温度	2–40 °C

*注: 动态载量的测量条件: 装柱高度: $10 \, \mathrm{cm}$,保留时间 $6 \mathrm{min}$,测试缓冲液: $0.02 \mathrm{M~NaH_2PO_4}$ 溶液, $0.15 \mathrm{M~NaCl}$, $\mathrm{pH7.4}$,当 IgG 的穿透量达到 10% 时,单位介质体积(mL) 的 $\mathrm{IgG1}$ 上样量(mg)

03 化学稳定性

表 2 化学耐受性表

耐受类别	耐受范围及表现
pH 稳定性	工作 pH 3.0~10.0;清洗 pH 2.0~12.0(40℃放置 7 天,其理化性质和功能没有明显变化)
试剂兼容性	Protein A 层析中常用的水溶性缓冲液

04 产品特性

4.1 高载量

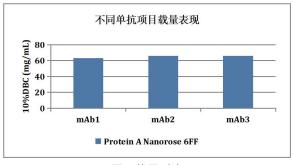


图 1 载量对比

4.2 保留时间窗口

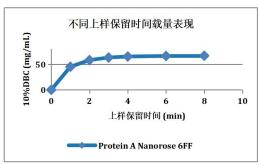


图 2 推荐保留时间 4-8 min

4.3 耐碱清洗稳定性

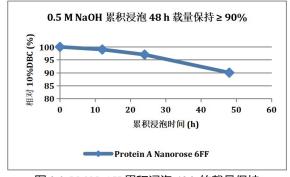


图 3 0.5 M NaOH 累积浸泡 48 h 的载量保持

4.4 压力-流速曲线

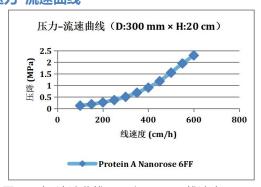


图 4 压力-流速曲线 (压降 MPa vs. 线速度 cm/h)

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209

05 纯化流程

5.1 前期准备

装柱所需用品 (装填层析柱所需用品)

1. 层析介质: Protein A Nanorose 6FF

2. 层析空柱: 实验室规模层析空柱及装柱器

3. 所需溶液: 装柱溶液 0.4 M NaCl 或纯化水; 排气溶液同上

4. 装柱工具:砂芯漏斗、搅拌棒、量筒等

纯化用品准备

1. 平衡/结合/洗杂缓冲液: 20 mM 磷酸钠、150 mM NaCl, pH 7.2

2. 洗脱缓冲液: 0.1 M 柠檬酸钠, pH 3.0-3.6

3. 上柱前要确保样品溶液有合适的离子强度和 pH 值,可以用平衡缓冲液对血清样品、腹水或细胞培养液稀释,或者样品用平衡缓冲液透析。样品在上样前建议离心或用 0.22 或 0.45 μm 滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。

5.2 重力柱装填与纯化

重力柱装填(购买散装填料可参考本流程装填重力柱)

- 1. 取合适规格的重力层析柱,装入下垫片,加入适量纯水润洗柱管和垫片,关闭下出口。
- 2. 将 Protein A Nanorose 6FF 混合均匀,用枪头吸取适量浆液加入至重力柱中(介质实际体积占悬液的一半), 打开下出口流干保护液。
- 3. 加入适量纯水冲洗介质,待柱管中液体重力流干后,关闭下出口。
- 4. 装入润洗后的上垫片,确保垫片与填料之前没有空隙,且保持水平。
- 5. 装填好的重力柱可以直接加入平衡液进行平衡,暂不使用时则加入保护液,4-30℃保存。

重力柱纯化(重力柱纯化的参考流程)

- 1. 平衡: 使用 5 倍柱体积的平衡缓冲液对装填好的 Protein A Nanorose 6FF 重力柱进行平衡。此过程应重复 2 至 3 次,确保填料完全处于与目的蛋白一致的缓冲液环境中。
- 2. 上样:将样品加入已平衡的重力柱,控制流速确保样品在柱内的保留时间不少于 2 分钟,以保证与填料的充分接触。收集流穿液,为提升结合效率,可进行反复上样。
- 3. 洗杂: 使用 10 至 15 倍柱体积的洗杂缓冲液进行清洗,以去除非特异性吸附的杂蛋白,此过程中需收集洗 杂液。
- 4. 洗脱:采用降低 pH 进行洗脱。建议采用分段收集(如每 1 个柱体积收集一管)并分别检测,此举既能确保目的蛋白被完全洗脱,也有助于获得高纯度与高浓度的样品。
- 5. 再平衡: 用平衡缓冲液再次平衡层析柱。

5.3 层析柱的装填与纯化

层析柱的装填(购买散装填料可参考本流程装填层析柱)

装柱前的准备:

1. 计算所需介质体积:

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209

Vm = 柱横截面积 × 计划柱床高度 × 介质压缩比;

建议压缩比: 纯化水: 1.15; 0.4 M NaCl: 1.10。

2. 介质置换: 用约 3 倍体积的装柱溶液清洗、抽滤, 将介质完全置换到装柱溶液中。

3. 制备 50% 胶悬液; 为获得准确体积, 可沉降过夜或低速离心 (3000 rpm, 5 min) 后量取。

4. 检查空柱:干净、无漏液。

装柱

- 1. 用装柱溶液为柱底滤膜排气; 随后封闭柱底并加入少量装柱溶液覆盖柱底。
- 2. 调整层析柱至垂直;连接柱头,以~5 mL/min 低流速为柱头滤膜排气。
- 3. 轻轻搅拌均匀胶悬液,一次性缓慢倒入空柱中(胶悬超出柱容积时,可用装柱器或接延长管)。
- 4. 放入排气后的柱头并贴合液面,排尽气泡后拧紧密封圈。
- 5. 恒流装柱: ~300 cm/h 压紧柱床 (压力 ≤0.5 MPa); 或恒压装柱: 将压力控制在 ≤0.15 MPa。
- 6. 柱床稳定后标记胶面高度,停泵将柱头下压至标记以下 3-5 mm, 再启动流速; 若胶面不再下降, 即装柱 完成。
- 7. 建议工作流速 < 装柱流速的 75%。

表 3 不同规格层析柱流速换算表

线速度(cm/h)	10 mm (mL/min)	16 mm (mL/min)	26 mm (mL/min)	50 mm (mL/min)
150	2	5	13.3	49.1
200	2.6	6.7	17.7	65.4
300	3.9	10	26.5	98.1

柱效测定

选择 所示的两种测试方法中的一种进行柱效测试。使用流动相平衡层析柱至基线平稳,将样品加载到层析柱中,继续使用流动相进行冲洗,待色谱峰出完至回到基线后,结束运行,对色谱峰进行积分,评价装柱果。 表 4 两种柱效测定方法

项目	丙酮法	NaCl 法
样品	1% (v/v) 丙酮水溶液	2 M NaCl 水溶液
样品体积	1% 柱体积	1% 柱体积
流动相	水	0.2 M NaCl 水溶液
流速	30 cm/h	30 cm/h
检测器	UV 280 nm	电导率

柱效评价的主要指标: 塔板数 N/m 与不对称因子 As。其计算方式:

 $N/m = 5.54 \times (V^R / W_h)^2 \times 1/L$

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209

As = b / a

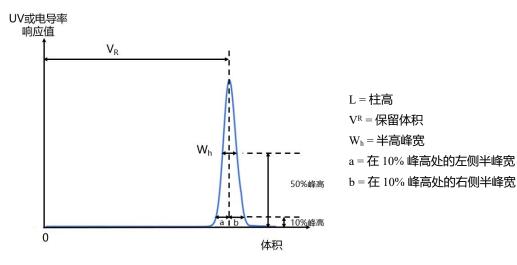


图 5 标准柱效测试色谱图

柱效评估标准

- 1. 柱效良好的层析柱,其理论塔板高度 HETP 的数值应小于介质平均颗粒大小的三倍;
- 2. 检测峰形必须对称,非对称因子数值 As 应在 0.8~1.8 之间,越接近 1 柱效越好;
- 3. 如柱效检测不达标,则需重新装柱。

层析法纯化(层析柱纯化的参考流程)

Protein A Nanorose 6FF 装填后,可适配各类常规中低压色谱系统。

- 1. 将泵管道注满去离子水。取下层析柱上塞,将其连接至色谱系统,打开下出口并旋紧。
- 2. 用 3-5 倍柱体积的去离子水冲洗,以置换出填料中的储存缓冲液。
- 3. 平衡: 使用至少 5 倍柱体积的平衡液对色谱柱进行平衡。
- 4. 上样:根据小试实验测得的结合载量,确定样品的上样体积和上样量。
- 5. 洗杂: 使用洗杂液冲洗柱子, 直至紫外吸收信号稳定于基线水平。
- 6. 洗脱: 采用降低 pH 进行洗脱。
- 7. 再平衡: 用平衡缓冲液再次平衡层析柱。

06 清洗与再生 (CIP)

随使用次数增加,脂质、内毒素、蛋白质等污染物会在层析柱上逐渐累积。为维持柱性能并延长其使用寿命, 建议定期执行以下在位清洗流程:

- 1. 使用 3 倍柱体积的平衡液冲洗层析柱。
- 2. 使用 3 倍柱体积的 1 M 醋酸 (HAC) 对层析柱进行再生处理。
- 3. 使用至少 2 倍柱体积的 0.1 M NaOH 溶液冲洗层析柱。此外,建议每间隔 10 个纯化批次后,使用 0.5 M NaOH 溶液进行强化清洗。
- 4. 最后,使用至少 5 倍柱体积的平衡缓冲液充分冲洗层析柱,以彻底去除清洗剂。

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209

后续的灭菌与储存条件: 可采用 0.5 M NaOH 作用 15-30 分钟; 若为已装填的层析柱, 可使用 20% 乙醇或 2% 苯甲醇作为保存液, 并于 2-8 $^{\circ}$ 条件下储存。

07 常见问题及解决方案

问题	原因分析	推荐解决方案
柱子反压过高	筛板堵塞	清洗筛板或直接更换新筛板。
	填料堵塞	按第6部分执行树脂 CIP 清洗,恢复通透性。
	裂解液含微粒	上柱前以 0.22 或 0.45 μm 滤膜过滤,或离心去除悬浮颗粒。
纯化过程中曲线不稳 定	样品/缓冲液夹带气泡	排除柱内气泡;必要时对样品与缓冲液脱气。
洗脱组分无目的蛋白	样品中抗体浓度偏低	选用以其抗原为配体的亲和介质进行捕获。
	抗体发生降解	适度提高洗脱阶段的 pH (按工艺窗口) ,以改善结合/洗脱。
回收率逐步下降	上样量过大	降低上样量,避免超载。
	柱床鼓胀("大肚"),有效载量下降	按第6部分进行树脂 CIP 清洗以恢复柱效。

注意:本产品仅供科研使用 (RUO),不得用于人体诊断或治疗。

电话: 400-018-6916 地址: 杭州市滨江区天和高科技园 5 幢 1209